
Math 656 • FINAL EXAM • May 9, 2016 

1) (10pts) Find all values of cosh1(2i), and plot them as point in the complex plane (hint: convert to a quadratic 

equation for ze ) 
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In the last step we used the fact that ln 5 2 ln 5 2  because 5 2 5 2 1
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2) (24pts) Describe all singularities of the integrand inside the integration contour, and calculate each integral (use any 
method you like). Each integration contour is a circle of specified radius 
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  Two poles of order 2 inside integraiton contour; use the standard pole formula for residues

      (the answer will be be zero since the integrand is even):
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      (the answer has to be zero since the integrand is even):
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3) (10pts) Find the first two dominant terms in the series expansion of 
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 near z = 0, and use your 

result to classify the singularity at z=0. What is the residue of this function at z=0?  What would be the domain of 
convergence of the corresponding full series? Finally, classify the singularity of this function at z=, as well. 
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4) (10pts) Sketch the domain of convergence of the Laurent series 
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 , and write down 

the expression for its sum. What are the singularities of this sum (which represents the analytic extension of this 
series)? Hint: this is a very straightforward problem: notice a combination of standard series of familiar elementary 
functions. 

This is a Laurent series centered at zo = 2i, so the series converges in some annulus (“ring”) 0 | |or z z R     

Now, the first term is a geometric series, and the second term is a Taylor series of an exponential function: 
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This sum has an essential singularity at zo=2i, and a pole at z-zo = e2, so the convergence annulus of its series 

expansion is 20 | 2 |z i e    (this can also be determined using the ratio test) 

========================================================================================= 

5) (16pts) Calculate two of the following integrals. Explain each step briefly but fully. If you choose (c), use an “indented” 
contour. Make sure to obtain a real answer in each problem! 
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The integral over  can be shown to approach zero as ,  by the Jordan's Lemma:
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6) (10pts) Use Rouche’s Theorem to find an annulus/ring with integer radii, n < |z| < n+1  n  , containing all roots 

of polynomial  f (z) = z3 + z2 + 40  

Trying a couple values of n easilly yields the result:  3 < |z| < 4 



===================   You may drop one problem out of the last three   =================== 

7) (10pts) Use the Argument Principle to find the number of roots of f (z) = 2i + z + z4 lying in the first quadrant. To do 
this, sketch the mapping of the relevant quarter-circular sector boundary (it’s quite straightforward). 
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8) (10pts) What is the image of the domain      Re 0, , Im 0,
2

z z
         

under the mapping sinw z ? 

Hint: consider separately the map of each boundary, and the map of any point or curve within this domain. You may 
use the Cartesian decomposition sin sin cosh cos sinhz x y i x y  . Note that a map does not preserve angles (is 

not conformal) wherever  ' 0f z  . 

This semi-infinite strip is mapped into entire first quadrant (easily seen by mapping the two corners and the 
three boundaries: 
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Note that the right angle at z=/2 is doubled, since this point is a simple zero of this function 
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9) (10pts) Suppose f(z) and g(z) are entire functions, and that |f(z)|  10 |g(z)| in the entire complex plane. Is it true that 
f(z) = g(z) for all z, where  is a constant? If true, explain carefully, using any theorem learned in this course. If not 
true, give a counterexample. Note that f(z) and g(z) may have zeros in the complex plane. 

   
 

   
   

This statement is true, and immediately follows from the Liouville Theorem for .

However, one has to prove that  is an entire function, despite the fact that  may have zeros.
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|  near each zero,  has a zero of orden for each zero of order  of function . 

Thus, all zeros of  are also zeros of , and are removable singularities of . Thus, the  Liouville theorem 
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